
CS240B Homework Two Paper Critique

Michael Lee

February 16, 2003

1 Introduction

This is a short critique of the paper SEDA: An
Architecture for Well-Conditioned, Scalable Internet
Services by Matt Welsh et. al., from UC Berke-
ley. The paper describes different paradigms for sup-
porting concurrency in server software, presents the
SEDA architecture, and discusses implementations of
servers that use SEDA.

2 Concurrency Paradigms

2.1 Process-based

Process-based servers are a simple way of supporting
concurrency. They merely require a platform with
system calls that can support (instead of special li-
braries). Switching between processes is very expen-
sive since each has its own context (including virtual
address space, file handles, network connections, etc).

2.2 Thread-based

Thread-based servers use multiple threads within a
single process. Since threads share one context,
switching between threads is much cheaper. This so-
lution, like the process-based solution, is generally
easy to program, but the SEDA paper shows that
threads still have considerable overhead in terms of
scheduling and lock contention. In addition, threaded
applications let the Operating System handle re-
source allocation issues, which is suboptimal for sit-
uations when efficiency is important.

2.3 Event-Driven

Event-driven systems attempt to provide a solution
to the scalability issues inherent in process- and
thread-based systems. Such systems control schedul-
ing and event handling themselves and so they aren’t
as susceptible to bad scheduling decisions made by
the OS. They have been shown to scale better than
other solutions, but are difficult to program because
many decisions that would otherwise be handled by
the operating system must be dealt with by the pro-
grammer. They also depend on support for non-
blocking I/O routines.

2.4 SEDA

SEDA builds upon existing Event-Driven theory to
provide a framework of stages, each of which is a
thread-based unit. One clear feature of this system
is that event-driven systems are now easier to de-
velop, since SEDA provides a foundation to build
upon, and has features to make debugging and per-
formance analysis easier. Thusfar it appears to only
have been implemented in Java, which potentially re-
duces the applications it can be used for. It also
requires support for non-blocking I/O routines (the
current implementation uses a bounded thread pool
to simulate non-blocking file I/O).

3 Other Features

One important feature of SEDA is the queues which
allow stages to communicate and allow the applica-
tion to interface with the external environment. By
monitoring the queues, the Gnutella packet router

1



was able to drop saturated client connections. In gen-
eral, queue status can enable the application to more
effectively adapt its operation to different load lev-
els, by dropping connections, giving error messages,
or providing stable but degraded service.

4 Paper Analysis

The paper presents two examples of applications de-
veloped using SEDA: the Haboob web server and a
Gnutella packet router. It provides concrete bench-
mark results in situations that closely mimic real-life
scenarios and shows that the SEDA-based solutions
outperform other software.

5 Conclusion

SEDA represents a novel approach to managing con-
currency in applications where scalability and effi-
ciency are of utmost importance. As the system ma-
tures, perhaps it will define a movement away from
traditional thread-based systems.

2


