A Review of Literature Concerning RC4

and

An Improved Cryptosystem Based Upon RC4
Michael Lee

Computer Science Dept., University of California at Santa Barbara

kirbysdl@cs.ucsb.edu

Abstract. This paper discusses important features and issues surrounding the RC4 encryption algorithm. I begin by introducing the study of stream ciphers as an important field of cryptography. I then proceed to examine the RC4 algorithm itself as well as a popular implementation of the algorithm known as Ciphersaber. In particular, I review and analyze security concerns of both RC4 and Ciphersaber. I conclude after proposing and briefly discussing a modified Ciphersaber cryptosystem that works around the known security concerns of RC4.

1
Introduction

Cryptographic algorithms can be broken into several major categories. First, they can be classified as public-key or private-key cryptosystems. Private-key systems are further separated into stream ciphers and block ciphers. Block ciphers generally encrypt a large block of plaintext at a time, whereas stream ciphers encrypt one datum at a time.

Stream ciphers are popular for several reasons. The first stream cipher, known as a one-time pad, [Ver26] is the only cryptosystem that has been proven to be unbreakable [Sha49]. However, the one-time pad had serious key management and distribution problems, so it was abandoned. Since then, stream ciphers have attempted to duplicate the one-time pad’s security while at the same time avoiding its key management problems.

Stream ciphers are also generally much faster than block ciphers because of the way they operate. The keystream for a stream cipher is oftentimes generated independently of the plaintext. In fact, the keystream can even be generated prior to the encryption step. During encryption, each element of the keystream is combined with each element of the plaintext to produce the ciphertext. The combining function used is usually the exclusive or operator (XOR). In the past, stream ciphers usually implemented a combination of linear feedback shift registers (LFSRs). However, attacks have been developed that will break most systems of LFSR-based stream ciphers.

2
The RC4 Stream Cipher

RC4, Which stands for “Ron’s Code 4,” [RivFAQ] is an example of a stream cipher that does not use LFSRs. Ronald Rivest designed it for RSA Data Security, Inc. (RSADSI) in 1987. It was, and is still considered by RSADSI to be confidential and proprietary. However, in 1994 an anonymous contributor posted an algorithm to the Cypherpunks mailing list that has since proven to be compatible with RC4 [Cyp94]. Henceforth, this alleged RC4 algorithm will be referred to as RC4, because it is overwhelmingly likely that it is the same as the official RC4 algorithm.

The legal status of RC4 is the source of some debate [Sch96] [Rei97]. There are two ways to protect an invention: either patent it or keep it a trade secret. Keeping an invention as a trade secret is dangerous because it can be leaked, reverse-engineered, or otherwise discovered by the public. Since RC4 has apparently been leaked, it can no longer be considered a trade secret. However, RSADSI would most likely attempt to sue anyone who uses RC4 in a commercial application without a license, and the cost of litigation would probably outweigh the cost of obtaining a license.

RC4 is a very popular stream cipher. First of all, it is extremely fast. Optimized versions of RC4 can encrypt over 20MB of data every second on a 150MHz Pentium [SW97]. In addition it is simple enough to code from memory and it is still unbroken after over a decade. It is used in Lotus Notes and Oracle Secure SQL [Sch96], the Secure Sockets Layer and Secure Shell protocols, and dozens of other applications. It is small both in code size because of its simple algorithm and in memory footprint because of its 256-byte state table. Lastly, it is also popular because it is unusual. RC4 is one of the few strong stream ciphers that do not use LFSRs.

3
The RC4 Algorithm

Like most stream ciphers, RC4 generates a keystream from its internal state. The cipher operates in OFB mode, which means that the next state is derived from the current state and the current keystream byte [RSAFAQ]. RC4 uses an array of 256 bytes containing a permutation of the integers 0 through 255 as its internal state. Its operation has two phases: the setup phase and the encryption/decryption phase. All math is done modulo 256, which is the size of the state table.

During the setup phase, the state table is first initialized such that state[i]=i (i=[0, 255]. This is done in lines 107-108 (please refer to the attached source code for line numbers). Next, the key is mixed into the state table in lines 114-117. For each of 256 iterations, i is incremented (line 114). Then, j gets incremented by the ith element of the state and the ith element of the key in line 115. Notice the modulus operator causes the key to effectively wrap around on itself, so that a key of length less than 256 may be used. Finally, the elements indexed by i and j are swapped in line 116.

During the encryption phase, the following steps are performed once for each byte in the plaintext. The variable i is incremented (line 128), j is incremented by the ith element of the state table (line 129), state elements i and j are swapped (line 130), and then elements i and j are added to form the index of the keystream byte (line 131).

The process of encryption and decryption are the same. The program doesn’t need to know whether it is encrypting plaintext or decrypting ciphertext because it performs the same operations for both encrypting and decrypting.

4
The General Security of RC4

The fact that RC4 has seen so much use but still hasn’t been cracked is a testament to its strength. RC4 draws its strength on its large state table, its period, its large keys, and its nonlinearity.

The state table is a permutation of 256 integers, so RC4’s internal state can be in 256! configurations. However, the state also depends on the variables i and j, so the internal state is an impressive 256!x2562, about 21700 [Sch96]. This state, combined with the nonlinear mixing performed during setup and execution causes the generator to have a very large period. “[Although] there is no proof for the lower bound of the periods of the sequences generated using RC4, theoretical analysis has established that the period is overwhelmingly likely to be greater than 10100” [Rob95]. Lastly, the length of keys accepted by RC4 can be very high indeed. In fact, keys can be up to 256 bytes (2048 bits) long, which is much higher than the 128-bit keys that most symmetric ciphers use today. Of keys longer than 128 bits are used, special measures must be taken to ensure the security of the algorithm. These issues are discussed below.

A large state, long period, and long key is not necessarily indicative of a strong cipher. RC4 undoubtedly would have fallen to cryptanalysis if it did not have well-designed nonlinear mixing steps. The importance of nonlinearity is shown by the large amount of research that has gone into studying linear complexity [Rob95]. In fact, t was the linear nature of LFSRs allowed James Massey to “break” LFSRs [Mas69].

5
Weaknesses of RC4

Even though RC4 has not been completely compromised, it is not surprising to find that a few small weaknesses have been found with it. Fortunately, it is possible to implement the algorithm to circumvent these issues. First, these weaknesses will be introduced and evaluated. Then, the Ciphersaber cryptosystems will be introduced as examples of implementations that offer solutions to these problems.

Encryption Key Collision. The first issue is not a problem with RC4 itself. It is an issue that affects all cryptosystems which XOR the plaintext with a keystream generator operating in OFB mode, so it is important to keep in mind when developing ciphers. Since the RC4 keystream depends solely on the encryption key used, it is important to encrypt every RC4 plaintext with a unique key. If two plaintexts are encrypted with the same key, then the XOR of the two ciphertexts will result in the XOR of the two plaintexts. A simple example illustrates this:

Encryption of two Plaintexts with Identical Key

 K
0110 0101 1101 1110 0010 1101

 Pa
1000 1011 1010 0111 0001 1001

 Pb
0010 0110 1100 1111 1010 0101

 Ca = Pa (K
1110 1110 0111 1001 0011 0100

 Cb = Pb (K
0100 0011 0001 0001 1000 1000

 Ca (Cb
1010 1101 0110 1000 1011 1100

 Pa (Pb
1010 1101 0110 1000 1011 1100

 C = ciphertext

 P = plaintext

 K = keystream

Even though the XOR of the two plaintexts doesn’t directly result in leaked plaintext, usually the plaintexts are of a known format. Natural language text (e.g. English text) follows certain semantics, binary files oftentimes begin with standard file headers, and form data may follow a certain format. This information may be enough for an attacker to recover the plaintexts [KT99] [DN96]. Additionally, if the attacker knows one plaintext, the second plaintext and the keystream can both be recovered:

Recovery of Plaintext with Known Plaintext

 Pa
1000 1011 1010 0111 0001 1001

 Ca (Cb
1010 1101 0110 1000 1011 1100

 Ca (Cb (Pa
0010 0110 1100 1111 1010 0101

 Pb
0010 0110 1100 1111 1010 0101

 Ca (Pa
0110 0101 1101 1110 0010 1101

 K
0010 0110 1100 1111 1010 0101

In order to avoid this weakness, any implementation of RC4 must make sure that every plaintext is encrypted with a unique key.

Andrew Roos’ Class of Weak Keys. The first problem with RC4 presented here is a class of weak keys discovered by Andrew Roos. At least one in every 256 keys results in an RC4 keystream in which the first byte “is strongly correlated with only a few bytes of the key, which effectively reduces the work required to exhaustively search RC4 key spaces.” [Roo95] Roos found that if the sum of the first two bytes of the key is 0 (mod 256), then the first byte of keystream is more likely to be the third byte of the key plus 3 (mod 256) than any other value.

In a perfect keystream generator, every keystream byte generated has an equal chance of having any decimal value from 0 through 255. In other words, there is a 1/256, or 0.39% chance that a byte of the random keystream is equal to any given value. However, Roos found that when a weak key was used in RC4 encryption, the first byte of keystream had approximately 13.8% chance of being the third byte of the key plus three (mod 256). This knowledge allows the attacker to reduce the effective key length by around 5.1 bits. Roos’ conclusion is summarized below, with the characteristic of the weak keys in boldface (all addition is done mod 256):

Roos’ Conclusion

 if (K[0] + K[1]) == 0

 then P(K[2]+3 == Keystream[0]) (13.8%

This finding is very significant. In order to avoid the reuse of encryption keys, it is conceivable that an implementation of RC4 would use an incrementing integer for the key. The first message would be encrypted with the key 1; the next would use the key 2, and so forth. In this situation, Roos shows that approximately one in 256 keys is weak. Even worse, there is a 510-key gap between weak keys every 256 weak keys. If an attacker is able to locate this gap, he or she can reduce the effective key length by about 18 bits. In order to avoid this weakness, an implementation of RC4 should either discard the first byte of keystream or make sure that it avoids weak keys.

Grosul-Wallach Related Keys. The second problem with RC4 is a family of related keys presented by Grosul and Wallach [GW00]. They show that for maximum length 2048-bit (256-byte) keys, there are 255x256 = 65280 so-called related keys. Exactly one byte in each of these related keys differs from the original key. Any of these related keys will produce a keystream (henceforth called a related keystream) that is very similar to the keystream produced by the original key in the first 100 bytes. After the first 100 bytes of output, the related keystreams and the original keystream diverge. This result is significant because if an attacker knows that a large key is being used, he knows that a related key will result in a partial decryption of the first 100 bytes of ciphertext.

Grosul and Wallach point out that the attack is not as successful for smaller keys, because of the nature in which the key is used to initialize the state table. For example, if a 128-bit (16-byte) key is used, it will be iterated through 16 times (16x16=256) during the course of the state table setup. Any single change in the key would be repeated 16 times as the state table is set up, and so related-key attacks are made much more difficult.

Arnold Reinhold mentioned a similar problem in his Cryptanalysis of Ciphersaber [Rei98]. He discovered that very large keys would not be mixed thoroughly into the state table during the setup phase (the key would not be iterated through a sufficient number of times). This problem and its consequences will be discussed in depth below.

Mantin-Shamir Distinguisher. The third concern is less devastating, but it is a valid concern in some applications of RC4. In the Spring of 2001, Itsik Mantin and Adi Shamir found a distinguisher for RC4 [MS01]. Their methods can be used to distinguish RC4 output from a purely random stream. They found that the second byte of the keystream has about a 1/128 chance of being zero. As mentioned above, any byte in a random stream should have a 1/256 chance of being zero. In the case of RC4, when the third element of the state table is zero and the second element is not two, then the probability that the second keystream byte is zero is approximately 1/256. In every other case, RC4 behaves pseudorandomly and the second keystream byte has about a 1/256 chance of being zero. The sum of these probabilities gives about 1/128. Their conclusion is given below, with the necessary conditions in boldface:

Mantin-Shamir Conclusion

if S[1] (2 and S[2] == 0

then P(0 == Keystream[1]) (0.39%

in total, P(0 == Keystream[1]) (0.78%

This is significant because in some broadcast applications, a plaintext might be encrypted with many different keys to be sent to multiple destinations. Mantin and Shamir showed that with 200 such ciphertexts, they could be reasonably sure that the encryption algorithm used was RC4.

The knowledge that the second byte of a keystream is zero also leaks the second byte of the corresponding plaintext because 0 (A == A. In addition, the knowledge that RC4 was used makes the job of cryptanalysis easier. It is more difficult for an attacker to crack a ciphertext if he doesn’t know what encryption scheme was used.

6
The Ciphersaber Cryptosystems

Even though there are minor problems with RC4, RC4 is still widely used because it has not been fully broken, and the problems that do exist can be circumvented. The Ciphersaber cryptosystems are now presented as examples of RC4 implementations that avoid the problems describe above.

Arnold Reinhold devised the Ciphersaber cryptosystem [Rei97] for several reasons. First of all, governments are very much interested in regulating the use of cryptography. It is easier for governments to spy on other nations and its own citizens if cryptography is lightly used, or if only broken systems are used. Therefore, governments will do everything in their power to limit the development, distribution, and use of strong cryptography.

However, if a simple (yet strong) cryptosystem can be developed, then every programmer could memorize the algorithm and be able to code it from memory. Ciphersaber was developed as a strong cryptosystem that is difficult to suppress. Governments would have to pursue extreme measures to ensure that programmers were not allowed to even know the algorithm. In the case of the United States, prohibiting an algorithm from being distributed would be tantamount to an abolition of free speech. Erasing it from programmers’ minds would require brainwashing.

Ciphersaber-1 (CS1). The first version of Ciphersaber, called Ciphersaber-1, faithfully implements the RC4 algorithm. CS1 was designed for “everyday use.” With this in mind, people who would most likely choose an easy to memorize natural language string (such as an English phrase) for their passphrase. A user could not be expected to memorize a new passphrase for every file that they encrypt; they would be tempted to use the same passphrase every time. However, it has been shown above that using the same key for encrypting two plaintexts leads to a critical problem.

The problem of reused encryption keys is solved through the introduction of an initialization vector (IV). A (supposedly) different IV is generated for each plaintext, so this scheme allows the user to use one passphrase for all of his or her encryption, and prevents the same RC4 encryption key from being used more than once. The pseudorandom IV is appended to the end of the user’s passphrase to form the key:

Ciphersaber Key

Passphrase
IV

0
p-1
p
p+9

During encryption, a pseudorandom IV of 10 bytes is generated. Most programming languages have a built-in pseudorandom number generator (PRNG) and a way to access the system clock. The PRNG is generally seeded with the current system time, and then it is used to generate 10 bytes. The IV is written out to the output file before any ciphertext is written. The IV is then appended to the passphrase to form the key and normal RC4 state table set up and encryption can then occur.

Ciphersaber File Format

Plaintext

0
n-1

IV
Ciphertext

0
9
10
n+9

For decryption, the 10 byte IV is read from the front of the ciphertext file and appended to the user’s passphrase. Normal RC4 operation can then proceed.

The reason that the IV is appended instead of prepended to the passphrase is to avoid Roos’ class of weak keys described above. It is possible, however unlikely, that the first two pseudorandom bytes generated would add up to zero (mod 256). If the IV were to be prepended to the passphrase, a weak key might be generated as a result. On the other hand, the user is likely to choose printable ASCII keyboard characters as his or her passphrase. These characters all have integer values between 32 and 126, and so the class of weak keys is avoided.

CIPHERSABER-2 (CS2). CS1 avoids the use of weak keys, but does not address the other problems mentioned above. Reinhold made a small change to the original RC4 algorithm, and used this revised version to create Ciphersaber-2 [Rei98].

This change was necessary for two reasons. We’ve already seen Grosul and Wallach’s result that a sufficiently long key has a family of related keys, each of which will provide a partial decryption of the first 100 ciphertext bytes. In addition, Reinhold found a related problem that is specific to Ciphersaber. Since the IV is appended to the user’s passphrase, a sufficiently long passphrase would cause the second byte of keystream to be affected only by the passphrase and not the pseudorandom IV. In that case, there is a chance that the second byte of the keystream would be the same for more than one ciphertext.

For example, the use of a 74-byte passphrase creates an 84-byte key, which is cycled through three times during state table setup. With a key of this length, Reinhold shows that there is a 0.478% chance that the second keystream byte is not affected by the IV. This, of course, is larger than the 0.39% likelihood of a random 8-bit value, so a key of this size should not be used.

This problem with large keys is especially significant for Ciphersaber because a natural language passphrase is used as the secret portion of the key. In other implementations of RC4, 128 bits of pseudorandom data might be used for the key, but natural languages such as English are tightly controlled by rules of syntax and spelling, so there is less entropy in an English phrase than a reasonably random source. Shannon concluded in his Prediction and entropy of printed English [Sha51] that each letter in English text has approximately one bit of entropy.

In order to approach 128 bits of entropy, an English phrase of around 128 letters would have to be chosen. The entropy of a passphrase can be increased by either choosing unconventional or controversial words [Skuz] or by choosing words based on a purely random source [Rei96]. Nonetheless, English passphrases are likely to be longer than an equivalent random key of the same measure of entropy, so Ciphersaber is likely to use longer keys.

Both Grosul-Wallach and Reinhold determined that the primary consequence of a long key is that such a key would not be sufficiently mixed into the state table during the setup phase. Reinhold proposed adding an extra loop in CS2 to address this problem. In line 215 of the included source, we see that the 256-step setup loop is repeated some user-defined number of iterations.

Even if the largest possible key of 256 bytes is used, the setup loop can be repeated as many time as desired to mix the setup table thoroughly. There are several consequences to this change.

First of all, the passphrase has been effectively increased in length and entropy. If the attacker knows the passphrase of a CS2 ciphertext, he must still discover the number of loops used during setup or he will not be able to recover the plaintext. Since modern computers can handle a large number of setup iterations (a Celeron 400 was able to complete 100,000 iterations in under 5 seconds), the use of a large number of mixing iterations can effectively add over ten bits of entropy to the key.

While the addition of an integer to the passphrase can complicate key exchange and key memorization, this drawback is minimal. It is easier for humans to memorize two small sets of data than one large set. For example, telephone numbers are written as groups of three or four digits, instead of a string of 10 digits. It is unlikely that using an extra four- or five-digit number will make Ciphersaber prohibitively difficult to use.

Another side effect of adding this loop is that CS2 can still encrypt and decrypt CS1 files by setting the number of mixing iterations to one.

CS2 thus solves the problem of a poorly mixed encryption key by adding a loop to repeat the state table-mixing step. However, it does not discard any bytes of keystream, so CS2 could still be distinguished from a random stream by the Mantin-Shamir distinguisher, and it could still be analyzed through Grosul-Wallach related-key cryptanalysis when operating in CS1 mode.

7
The Curbysaber-3 (CS3) Cryptosystem

We now introduce Curbysaber-3, a cryptosystem based heavily on CS2 but including small changes to make it more resistant to key collision, distinguishers, and cryptanalysis.

One possible weakness of Ciphersaber that has not been discussed is the creation of the IV. A perfect cryptosystem would guarantee that every plaintext would be encrypted with a unique IV. In order to be easily implemented by any programming language, Ciphersaber does not restrict the means by which an implementation generates the IV. Most programmers are tempted to seed some built-in PRNG with the system time. This is not a sufficient source of randomness, however.

As Reinhold showed in his Cryptanalysis of Ciphersaber [Rei98], the randomness of an IV is limited by the seed source and by the size of the PRNG state. For example, if an 80-bit PRNG were seeded with a source of 80-bit entropy, then the IV would have 80 bits of entropy. However, if the seed only offers 32 bits of entropy, the IV could not exhibit more than 32 bits of entropy, even if the PRNG generates 80-bit values. Similarly, a 32-bit PRNG would only generate an IV with 32 bits of entropy even if seeded with an 80-bit source.

In addition, Reinhold notes, “most C programming environments offer a 32 bit random number generator. If such a generator is used to create an 80-bit IV there is still at most only 32 bits of randomness.” [Rei98] The BASIC language that is included with most versions of MS-DOS and Windows exhibits an even poorer level of entropy. Lastly, a user is more likely to encrypt messages during certain hours of the day, so the danger of seeding the PRNG with the system time is worsened.

The problem is compounded again if a group of people use the same passphrase. Imagine a group of people who agree on a passphrase for the purposes of interchanging data within the group. If everyone in the group encrypts a message at around the same time, there is a chance that two messages would be encrypted with the same IV and the same passphrase. As the size of the group increases, so does the chance of a collision.

To help solve this problem, I propose that the method through which the IV is generated be formalized. First, the use of a cryptographic PRNG such as Counterpane’s Yarrow-160 [KSF99] shall be used. Another candidate is the IBAA/ISAAC family of PRNGs [Jen96]. The PRNG will be seeded once with the time elapsed since January 1, 1980. This number is available to many popular programming languages. If a time measurement of resolution greater than one second is available, it should be used. Ten bytes (80 bits) of IV data will be generated from the PRNG after it is seeded. Next, the PRNG is reseeded with the time that the user took to enter the passphrase and number of mixing loops (as in CS2). If the user enters a destination file name, the time for that data entry is also included. A high-resolution timer such as uclock() [DelFAQ] or Allegro’s timer routines [Har97] should be used to assure accurate timings and to prevent collision between IVs for different ciphertexts. The reseeded PRNG is used to generate the another ten bytes of the IV.

This method of IV generation has several benefits. It ensures that users who encrypt files at around the same times are likely to end up with different IVs, and users who type at consistent speeds but encrypt files at different times are likely to end up with different IVs. Since twenty bytes of IV are used instead of ten, this change makes CS3 incompatible with CS2 and CS1. Another disadvantage is the need to find or implement a high-resolution timer. A strong cryptographic PRNG such as Yarrow or ISAAC is also desirable, but not absolutely necessary. This scheme will produce an IV with about 32*2 = 64 bits of entropy even when using the 32-bit PRNG built into most C environments, making IV collision less likely.

The second change is shown in the source code on lines 324-326. The setup procedure generates and immediately discards a number of keystream bytes equal to the size of the state table. For CS3, 256 bytes of keystream are discarded. This change causes CS3 to be incompatible with the Ciphersabers. However, it causes the proposed system to be immune to the Mantin-Shamir distinguisher and avoids the weakness associated with Grosul-Wallach related-keys.

8
The Security of Curbysaber-3

CS3 has been developed to be resistant to all of the known attacks, inconsistencies, and other flaws related to RC4. However, no proof is provided as to the minimum security offered by CS3. It is always difficult to assess the security of a new cryptosystem. Cryptanalysis will show that a particular scheme is either weak or strong against that type of analysis, but even repeated failed attempts to break a cryptosystem is no substitute for a rigorous proof of its strength. I have evolved CS3 from a cryptosystem which is believed to be secure, and so any that may exist are most likely not in the underlying algorithm, but rather those introduced by my changes.

However, even if CS3 is proven to be absolutely secure, it is still up to the users to utilize the cryptosystem in a responsible manner. Bruce Schneier recently noted that semantic attacks are becoming increasingly popular and increasingly successful [Sch00]. If encryption is to be successfully deployed, we must make sure that users are educated about the proper use of cryptographic tools. Secure cryptography in the hands of an uneducated user is worse than no cryptography at all because it provides the user with a false sense of security, and that user is more likely to be careless with his data.

9
Conclusions

I have presented a thorough analysis of the RC4 stream cipher and the Ciphersaber family of cryptosystems. It is surprising that such a small (in terms of code size and memory footprint), fast, and unconventional stream cipher has survived over a decade of study and cryptanalysis. Even though people have detected weak keys and other small inconsistencies, RC4s ability to mix its state table during operation in a nonlinear fashion has helped it avoid complete successful cryptanalysis. To this day, there are no public attacks on this algorithm, and so it remains a feasible candidate for applications where speed and security are both important. With this in mind, I propose a new cryptosystem based heavily upon RC4 and Ciphersaber that circumvents all known attacks on RC4.

10
Works Cited

All academic papers at URLs given below have been mirrored to http://curby.dhs.org/cryptodocs/ .

[Cyp94]
Anonymous, RC4 Source Code. Cypherpunks Mailing List post,
September 9, 1994.

http://the.wiretapped.net/security/cryptography/algorithms/rc4/rc4.revealed.gz
[DelFAQ]
DJ Delorie, 22.27 Delaying Execution for Short Periods of Time,
accessed May 2001.

http://www.delorie.com/djgpp/v2faq/faq22_27.html
[DN96]
Dawson E. and Nielsen L., Automated Cryptoanalysis of XOR Plaintext Strings, Cryptologia, v. XX, no. 2, April 1996.

[GW00]
Alexander L. Grosul and Dan S. Wallach, A Related-Key Cryptanalysis of RC4, Rice University, June 2000.

http://www.wisdom.weizmann.ac.il/~itsik/RC4/GrosulWallach.ps
[Har97]
Shawn Hargreaves, Allegro: Timer Routines, 1997.

http://www.cs.umbc.edu/~rrhudy2/alleg003.htm
[Jen96]
Robert J Jenkins, Jr., ISAAC and RC4, 1993.

http://burtleburtle.net/bob/rand/isaac.html
[KSF99]
John Kelsey, Bruce Schneier, and Niels Ferguson, Yarrow-160: Notes on the design and analysis of the Yarrow Cryptographic Pseudorandom Number Generator, Sixth Annual Workshop on Selected Areas in Cryptography, Springer Verlag, August 1999.

http://www.counterpane.com/yarrow-full.ps.zip
[KT99]
Kalle Kaukonen and Rodney Thayer, A Stream Cipher Encryption Algorithm "ARCFOUR", Internet Engineering Task Force, July 1999. Work in progress.

http://community.roxen.com/developers/idocs/drafts/draft-kaukonen-cipher-arcfour-03.txt
[Mas69]
James L. Massey, Shift-register Synthesis and BCH Decoding, IEEE Transactions on Information Theory, v. IT-15, pp. 122- 127, January 1969.

[MS01]
Itsik Mantin and Adi Shamir, A Practical Attack on Broadcast RC4, Fast Software Encryption 2001, 2001.

http://www.wisdom.weizmann.ac.il/~itsik/RC4/bc_rc4.ps
[Rei96]
Arnold Reinhold, The Diceware Passphrase Homepage, 1996.

http://www.diceware.com/
[Rei97]
Arnold Reinhold, The Ciphersaber Manifesto, Cypherpunks Mailing List post, September 24, 1997.

http://ciphersaber.gurus.com/

http://www.inet-one.com/cypherpunks/dir.1997.09.25-1997.10.01/msg00026.html
[Rei98]
Arnold Reinhold, A Cryptanalysis of Ciphersaber-1, April 1998.

http://ciphersaber.gurus.com/cryptanalysis.html
[RivFAQ]
Ronald Rivest, Frequently Asked Questions.

http://theory.lcs.mit.edu/~rivest/faq.html
[Roo95]
Andrew Roos, A Class of Weak Keys in the RC4 Stream Cipher, sci.crypt post, September 22, 1995.

http://www.achtung.com/crypto/roosattack.txt
[Rob95]
M. J. B. Robshaw, Stream Ciphers (TR-701), RSA Digital Security, Inc. 1995.

http://www.rsa.com/rsalabs/pubs/techreports/tr-701.ps.gz
[RSAFAQ]
RSA Laboratories, RSA Laboratories' Frequently Asked Questions About Today's Cryptography, Version 4.1, RSA Security Inc., 2000.

http://www.rsasecurity.com/rsalabs/faq/
[Sch96]
Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed., New York, Wiley, pp. 397-398, 1996.

[Sch00]
Bruce Schneier, The Third Wave of Network Attacks, ZDnet.com,
October 3, 2000.

http://www.zdnet.com/filters/printerfriendly/0,6061,2635895-2,00.html
[Sha49]
Claude E. Shannon, Communication Theory of Secrecy Systems, Bell System Technical Journal, v. 28, pp. 656--715, 1949.

http://www3.edgenet.net/dcowley/docs.html
[Sha51]
Claude E. Shannon, Prediction and Entropy of Printed English, Bell Systems Technical Journal, v. 30, pp. 50--64, 1951

[Skuz]
How to Choose a Passphrase FAQ.

http://www.skuz.net/passfaq.html
[SW97]
Bruce Schneier and Doug Whiting. Fast Software Encryption: Designing Encryption Algorithms for Optimal Software Speed on the Intel Pentium Processor. Proceedings of the Fourth International Workshop on Fast Software Encryption, Springer-Verlag, pp. 242-259, 1997.

http://www.counterpane.com/fast_software_encryption.pdf
[Ver26]
Gilbert S. Vernam. Cipher Printing Telegraph Systems for Secret Wire and Radio Telegraphic Communications. Journal of the American Institute of Electrical Engineers, vol. 45, pp. 109--115, 1926.

11
Source Code Samples

001
#define STATE_SIZE 256

002

003
void swap(unsigned char *a, unsigned char *b) {

004

005
 unsigned char swapper = *a;

006
 *a = *b;

007
 *b = swapper;

008
}

101
void rc4setup (unsigned char *key, int keylen, unsigned char *state) {

102

103
 int i,

104
 j;

105

106
 /* Initialize state */

107
 for (i = 0; i < STATE_SIZE; i++)

108
 state[i] = i;

109

110
 i = 0;

111
 j = 0;

112

113
 /* Mix state with key */

114
 for (i = 0; i < STATE_SIZE; i++) {

115
 j = (j + state[i] + key[i % keylen]) % STATE_SIZE;

116
 swap(&state[i], &state[j]);

117
 }

118
}

119
120
void rc4 (unsigned char *state, FILE *in, FILE *out){

121

122
 unsigned char i = 0,

123
 j = 0,

124
 currbyte = fgetc(in),

125
 xorIndex;

126

127
 while (!feof(in)) {

128
 i = (i + 1) % STATE_SIZE;

129
 j = (j + state[i]) % STATE_SIZE;

130
 swap(&state[i], &state[j]);

131
 xorIndex = (state[i] + state[j]) % 256;

132
 fputc(currbyte^state[xorIndex], out);

133
 currbyte = fgetc(in);

134
 }

135
}

201
void cs2rc4setup (unsigned char *key, int keylen, unsigned char *state,

202
 int loops) {

203

204
 int i,

205
 j;

206

207
 /* Initialize state */

208
 for (i = 0; i < STATE_SIZE; i++)

209
 state[i] = i;

210

211
 i = 0; // :: cs2rc4setup continued ::

212
 j = 0;

213

214
 /* Mix state with key 'loops' number of times */

215
 for (int k = 0; k < loops; k++) {

216
 for (i = 0; i < STATE_SIZE; i++) {

217
 j = (j + state[i] + key[i % keylen]) % STATE_SIZE;

218
 swap(&state[i], &state[j]);

219
 }

220
 }

221
}

301
void cs3rc4setup (unsigned char *key, int keylen, unsigned char *state,

302
 int loops, int *globali, int *globalj) {

303

304
 int i,

305
 j,

306
 k;

307

308
 /* Initialize state */

309
 for (i = 0; i < STATE_SIZE; i++)

310
 state[i] = i;

311

312
 i = 0;

313
 j = 0;

314

315
 /* Mix state with key 'loops' number of times */

316
 for (k = 0; k < loops; k++) {

317
 for (i = 0; i < STATE_SIZE; i++) {

318
 j = (j + state[i] + key[i % keylen]) % STATE_SIZE;

319
 swap(&state[i], &state[j]);

320
 }

321
 }

322

323
 /* Discard STATE_SIZE bytes of keystream */

324
 for (k = 0; k < STATE_SIZE; k++) {

325
 cs3rc4(&state, 0, &globali, &globalj);

326
 }

327
}

328

329
unsigned char cs3rc4 (unsigned char *state,

330
 unsigned char in,

331
 int *i, int *j) {

332

333
 unsigned char xorIndex;

334

335
 *i = (*i + 1) % STATE_SIZE;

336
 *j = (*j + state[*i]) % STATE_SIZE;

337
 swap(&state[i], &state[j]);

338
 xorIndex = (state[*i] + state[*j]) % 256;

339
 return in^state[xorIndex];

340
}

11

